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It is shown that an infinite-dimensional symmetry is present in two-dimensional 
electromagnetic field theory. The generators of the ensuing Virasoro algebra are 
explicitly calculated both for periodic and antiperiodic fields. 

In two space-time dimensions conformal invariance leads to an infinite 
set of conserved quantities (Itzykson and Zuber, 1985). In string theory 
(Green et al., 1988) these are just constraints like T+ + = T_ _ = 0, where 
T+ + and T__  are the components of the energy-momentum tensor in 
light-cone notation. In this paper we show that an infinite-dimensional 
symmetry is present in two-dimensional electromagnetic (or electrostatic, 
to be precise) field theory which also arises from the constraints of the 
theory. To draw an analogy with closed strings, we consider a cylindrical 
two-dimensional space-time and impose a periodic boundary condition on 
the electromagnetic field Au. For the open string, x and t are unbounded 
( - oo < x < ~ ,  0 < t < oo). The generators of the ensuing Virasoro algebra 
are explicitly calculated both for periodic and antiperiodic (twisted) fields. 

We start with the general action for a free electromagnetic field in a 
two-dimensional curved space-time, given by 

S 

where the Lagrangian density is 

L~'(x) = -�88 Fu~F uv with 

f ~(x) d2x (1) 

Fu~=OUA~-O~AU (#, v - 0, 1) (2) 
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The stress tensor  T"~(x) in general is defined as 

2 6S 
T~v(X) x / ~ 6 g U V ( x  ) (3) 

For  the electromagnetic field we have 

TUV(x) = (g"=F~F ~ + �88 ~;') (4) 

Clearly the stress tensor is symmetric, traceless, and gauge invariant. 
Being massless, in two dimensions this theory is clearly conformally 

invariant. The subsequent analysis of the dynamics and quantization of the 
electromagnetic field are expedited by making a convenient choice of  
gauge. We choose 

(+1 ~ 0) 
g~/~ = q~/~ = 

for the two-dimensional Minkowski metric. 
Equation (2) becomes 

~e(x)  = ~(00A1 -- 01A0) 2 (5) 

and the corresponding Hamiltonian density is 

~ ( x )  1 "2 2 = ~[A1 - (01A0) l (6) 

Using the Lorentz gauge 0vA ~ = 0 ,  # = 0, 1, we obtain the equation of 
motion as follows: 

(0 2 - a2)A"(x, t) = 0 (7) 

The components of T uv follows from (4) as 

TOO Tll l " 2 = _ = 2 [ A  1 - - ( 0 1 A o )  2] 

T ~ = T l~ = 0 (8) 

Clearly from (6) we can see that T OO is the Hamiltonian density of the 
system. 

Now T l o = 0  [which follows from (8) after employing the usual 
procedures for lowering the indices]. Hence if we put v = 0 in the conserva- 
tion law g~UO~ T~v = 0, we obtain 00 Too = 0. This implies that there exists an 
infinite set of conserved quantities. 

Case A. The simplest generalization of Minkowski-space quantum 
field theory is the introduction of nontrivial topological structure in a 
locally fiat space-time. As mentioned before in analogy with the closed 
string, we consider the R 1 |  l two-dimensional space-time with com- 
pactified spatial sections. This space-time has the two-dimensional 
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Minkowski-space line element, but the spatial points x and x + L are 
identified, where L is the periodicity length. This space-time is shown in 
Fig. 1. 

We impose periodic boundary conditions on A's, i.e., 

A(x,  t) =- A(x  + nL, t) (9a) 

One can also consider imposing antiperiodic boundary conditions 

A(x,  t) - ( - 1)"A(x + nL, t) (9b) 

We will discuss the implications of boundary conditions for the field modes 
later. 

Case B. In analogy with the open string, we can also consider the 
general case 

- ~ < x < ~ ,  0 < t < ~  of space-time 

Let us now determine the proper boundary conditions to be used at the 
boundaries. The usual action is given in equation (1), 

S = ~ f f d x d t ( ~ o A l - O ,  Ao) 2 (9c) 

Demanding the action to be stationary, i.e., 6S = 0, we get the required 

t 

X 

j 
Fig. 1 
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boundary conditions to be satisfied besides the equation of motion stated 
earlier: 

and 

( O o A l  - -  OlAo)[Y=o = 0 (9d) 

L (0oAl - OlAo)lx=0 = 0 for case A (9e) 

Due to periodicity (or antiperiodicity) in case A, this is automatically 
satisfied. But for the general case (case B) we have to impose the boundary 
conditions that 

(OoA, - = .  = 0 ( 9 0  

(ctoA 1 - a~.4o)[x = -~o = 0 (9g) 

separately. Now from the equation of motion we get that Oo E1 = 0, which 
implies that the Hamiltonian is constrained to be zero, i.e., H = 0. The case 
is similar to string theory. As the electric field E ~ is defined as 

E t = ~oA1 - -  O1A 0 (10) 

we have 

E l ( m ,  t) = 0 

E l ( -  oo, t) = 0 (10a) 

El(x, oo) - El(x, 0) = 0 (10b) 

for both cases. Equations (10a) and (10b) are free 

Also, the condition 

has to be satisfied 
boundary conditions which imply that the energy density at 4-oo be zero 
[as energy density E l (Green et al., 1988)]. Now the Hamiltonian generates 
the time evolution of  the system. The Fourier components of Too (evaluate 
t = 0) are 

Lm = eE~"XTo0 dx, for case A (11) 

j'" 
L, .  = (eimXToo+e-imxrll)dx for case B (12) 

We restrict ourselves to case A only. Similar results hold for case B. 
The general expression of A"(t, x) which satisfies equation (7) is 

= ~+ u~"~'(t, x)] (13) A"(t, x) ~ [a~,,u~,(~'(t, x) + akl 
k l ,k 
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where the plane wave modes uf, <~) are given by 

with 

I 
U(k~)~>(t, X) -- l/~ 8 ~  ) ei(k'x- wt) (14) 

(2Lw) 

e~,u~ )~z), 2 = 0, 1 

labeling independent polarization vectors associated with mode kl. From 
the mass shell condition, w = I k, I. The polarization vectors can be chosen 
to form an orthonormal system with 

The effect of  the space closure is to restrict the field modes (14) to a discrete 
set 

Uk = (2Lw) -1/2 ei(k,x - wt) (16) 

where kl = 2zcn/L, n = 0, ___ 1, +2,  +3  . . . . .  As w--Ikl, the model labeled 
by positive values of  n have the form exp[ikl ( x -  t)] and represent waves 
moving left to right, while negative values of  n give exp[ikl (x + t)], repre- 
senting left-moving waves. 

For  the antiperiodic case the modes are given by equation (16) but 
with kl =2n(n  +�89 n = 0, +1,  + 2  . . . . .  In the latter case the electro- 
magnetic field is to be regarded as a section through a nonproduct bundle 
and we call it a twisted field. Avis and Isham (1979a,b) have argued that in 
most space-times with nontrivial topology, one must include both twisted 
and untwisted fields. Thus twisted fields should not be considered as a 
mathematical curiosity, but rather as being equally as important as un- 
twisted fields. Before we proceed further we note that one can choose the 
polarization vector in two dimensions in the following way: e ~ = (0 ~) and 

W e ( l )  o shall now calculate the Fourier mode of the constraint ~e2 = (1). 
A~-(01Ao)  �9 First we rewrite equation (13) in the following way: 

1 A"(t ,x)  ~ 2~ /~). i(2 . . . .  D 2 p*-~ 2"t - i , 2  . . . .  t,] = [e, e a ,  + e ,  a ,  e (17) 
, o (2~rw) 1/2 

for the right-moving waves and a similar expression (with n < 0) for the 
left-moving modes. Also, to draw analogy with the string results, we have 
taken L = re. Now we define 

1 ~ e2i,,x[.~ ~ _ (O~A0)2] dx (18) Lm=~ 
Jo 
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it can be shown that 

[L,., L,,] = (m - n ) L . , + .  (21) 

which is the famous Virasoro algebra. The steps followed to deduce (20) 
are valid at the quantum mechanical level for m + n # 0. For m + n = 0, 
the two infinite sums in (19) suffer from normal order ambiguity. To take 
account of this we modify (2) in the following way: 

[L,n, L.] = (m - n)L., +. + A(rn)6,,, +. (22) 

A(m) can be calculated in the customary way. Using the Jacobi identity, 
namely, 

[Lk, [L., Lm]] + [L., [Lm, Lk]] + [Lm, [Lk, Ln]] = 0 (23) 

it can be shown that A(m) is of  the form 

A(m) = am ~- -r- bm (24) 

Now if 10t ) is the vacuum associated with the discrete modes (16), then 
]0L ) ~  10) as L ~ o% ]0) being the usual Minkowski-space vacuum. To 
calculate A(m) we utilize the fact that (0I[L~, L 1] 10) = 0 and then explic- 
itly calculate the value of (01[L2, L_2]I0). It can be shown that a and b are 
given by 

a = 1/12, b = - 1 / 1 2  

Hence A(m) can be written as 

A(m) = ~2 (m3 - m) (25) 

where C = 1 for periodic fields and is equal to 3/4 for antiperiodic fields. 
We also give the explicit expression for L0: 

L~ = ~ g~'~( ~ .=o na~*a~) - 1  (26) 

1262 

After some straightforward calculations we get 

Z m = ~ Z g  ~~ [(n[n -m[)~/2a~a~_,,, + (nln +rn[)~/2a~*a~+,n] (19) 
h., n,2 

Using the commutation relation 

[a~,a~. z] = 6 _;.4" (20) - -  n,n'~ 
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and a similar expression for Lo; the Hamiltonian is given by 

H=Co+s 
1 22 2t 2 ~2t ~2 = E g [(E na, a,) + (E na, a,)] (27) 

z 12 

and a similar expression for the antiperiodic fields with n replaced by 
n + 1/2 and the constant terms being 1/24 instead of -1/12.  

To conclude, we have found that an infinite-dimensional symmetry can 
be realized in two-dimensional electromagnetic field theory and the symme- 
try algebra is the Virasoro algebra. Recently Cappelli et al. (1992) have 
shown that free planar electrons in a uniform magnetic field (in 1 + 2 
dimensions) possess the W~o-algebra. This study is of importance for the 
quantum Hall effect. However, in our case since the study was restricted to 
1 § 1 dimensions we essentially studied an electrostatic field. An extension 
of this work in 1 + 2 dimensions is likely to yield richer algebraic structure. 
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